Serialization

What is Serialization?

Serialization is nothing but storing of objects in files (or any other
stream).

Why do we need it? Why can we not store objects
in a database?

Serialization is a quick and efficient way of storing objects. There is no
need to establish a connection to a database for such comparatively
trivial objects.

These objects can then be acted upon by the same or other application(s).

The files can be copied by any application to any other machine with
ease. It is comparatively simple and fast than getting the data by
establishing a connection with the database. The database approach will
still involve either writing the For xML SQL or recreating the objects from
the field values of each row.

A decision to store objects on the database may involve creation of
appropriate schemas. Any change will be even more maintenance
intensive. With serialization, the schema need not be decided in advance
and schemas can be created, edited and discovered with simple program
structures.

What do we need to do in order to
serialize objects?

The definition Serialization is nothing but storing of objects in files tells us
that all we need is:

1. An Object to be serialized.

2. A FileStream to the file where the object will be stored (any other
stream will work equally well).

3. Aninstance of a class which will do the action of storing.

Vineet Sharda

4. Storing.
In terms of code, this is how we do it:
Step 1 involves 3 sub steps:

a) Mark the class of the object to be serialized, with the [Serializable]
attribute.

b) Create a parameterless constructor of this class.
c) Create the object.
Step 2 is a simple file handling mechanism.

Step 3 involves creating an instance of a class called BinaryFormatter, say

Formatter.

Step 4 involves calling the serialize method of the Formatter.

Sample code

Class:

// Step 1la

[Serializable]

public class ClsSerialize

{

// Step 1b - optional if there is no other constructor
public ClsSerialize() { }
public string sName;
public int iDependents;
private int iAge;
public int Age
{

get{return this.iAge;}
set{this.iAge = value;}

Namespace needed by the client code:

// Namespace containing the BinaryFormatter
using System.Runtime.Serialization.Formatters.Binary;

Client code:

// Step 1c

ClsSerialize oSerIn = new ClsSerialize();
oSerIn.sName = "Aaron";

oSerIn.iDependents = 3;

oSerIn.Age = 32;

// Step 2

string sFile = @"C:/Temp/" + oSerIn.sName + ".bin";
System.IO.FileStream fsOut;

try{

Vineet Sharda

fsOut = System.IO.File.OpenWrite(sFile);
¥

catch{ return; }

// Step 3

BinaryFormatter Formatter = new BinaryFormatter();
// Step 4

try{
Formatter.Serialize(fsOut, oSerIn);

}
finally{ fsOut.Close(); }

Note: The output file stream parameter comes before the input object parameter.

Serialized Output

The serialized output of the above code looks like this.

yyyy JWinAppSerialization, Version=1.0.0.0, Culture=neutral,
PublicKeyToken=null
WinAppSerialization.ClsSerialize sName
iDependents
iAge
Aaron

As we can see, all the public and private fields show up in the output.
Most of the junk has been replaced by dashes.

How about getting the objects back from these
files?

The first three steps remain almost the same (just keep in mind that now,
we are reading/retrieving instead of writing/storing). In the fourth step,

instead of calling the serialize method, we call the Deserialize method,
which creates the object for us.

This is how the client code for deserializing will look like:

// Step 2
string sFile = @"C:/Temp/Aaron.bin";
System.IO.FileStream fsIn;

try{
fsIn = System.IO.File.OpenRead(sFile);
¥

catch { return; }

// Step 3

BinaryFormatter Formatter = new BinaryFormatter();
// Step 4

ClsSerialize oSerOut;

try{
oSerOut = (ClsSerialize)Formatter.Deserialize(fsIn);

Vineet Sharda

¥
finally { fsIn.Close(); }

See the convenience: no hassle of identifying the table schema and then
creating the object accordingly. In other words, the class knows how to
get itself back. Programmatically doing this with a class will involve a
sophisticated helper class. Microsoft has already done this for us!

Soap Formatting

If we want to make the serialized output human readable, pass through
firewalls and be used universally by applications, we should use the
SoapFormatter class instead of the BinaryFormatter. As can be expected,
this class is in the System.Runtime.Serialization.Formatters.Soap
namespace.

Note: The mscorlib.dllis loaded by the Visual Studio when a project is created. This
assembly contains the
System.Runtime.Serialization.Formatters.Binary Namespace, which
contains the BinaryFormatter class. In order to work with the
SoapFormatter class, we need to add a reference to the
System.Runtime.Serialization.Formatters.Soap assembly which contains a
namespace of the same name. This namespace, in turn, contains the
SoapFormatter class.

Advanced Scenarios

Scenario 1: Prevent serialization of a field

Let’s say, we have a password or a Session ID field which is retrieved
from a database or a server when the object is created, and then used for
the lifetime of the object. We do not want to store this field in the
serialized file.

In this case, we mark it with the [NonSerialized] attribute.

Scenario 2: Serializing an array or any collection

All the Microsoft classes are Serializable. This includes the array and all
the collections. So, nothing more than the 4 basic steps of serialization
needs to be done.

Scenario 3: A field of a user-defined type

Vineet Sharda

If a field of the class to be serialized is of a user-defined type, then, at the
time of serialization, an error will be thrown. This error is the same as
the one that the runtime will throw when we try to serialize an object
when its class is not marked with the [Serializable] attribute or its class
does not have a parameterless constructor. Basically, the runtime simply
cascades down the object and its constituent objects to serialize the entire
object. If any object in this graph is not serializable, an error is thrown.

As you might have guessed, all that one has to do in this case is to
1. Mark the class of the field with the [Serializable] attribute.

2. Create a parameterless constructor of this class.

Scenario 4: An enum field

Since underlying type of enum is int, nothing needs to be done.

Scenario 5: Polymorphism

An object accessed as its parent class instance and then serialized still
needs to have its class marked [Serializable] and must have a
parameterless constructor. The process of serialization simply looks at the
serializability of the object and does not follow the inheritance rule.

Tip: If you try combining a few scenarios, you might figure out new exam questions
yourselfl! Don't hesitate in doing so. It will be a very simple exercise. A few such
scenarios are given below.

Scenario 6: Serializing an array or collection of a user-defined type

This scenario is a combination of Scenarios 2 and 3. So, the only thing to
be done in this case is to mark the class of which the object is the array as
[Serializable] and make a parameterless constructor for the same.

Scenario 7: An array field

Almost like Scenario 2 — therefore — do nothing special.

Scenario 8: A field is an array of user-defined elements

Almost like Scenario 6 — therefore - mark the class of which the field is
the array as [Serializable] and make a parameterless constructor for the
same.

Scenario 9: Polymorphism over field

Vineet Sharda

Combination of Scenarios 3 and 5 — child class should be marked as
[Serializable] and have a parameterless constructor.

Scenario 10: Polymorphism over an array field

Combination of Scenarios 5 and 7 — child class should be marked as
[Serializable] and have a parameterless constructor.

Custom Serialization

What constitutes custom serialization?

We might need to customize Serialization for any of the following
reasons:

1. To avoid marking fields with serialization attribute(s). In other
words, to move from declarative customization to programmatic
customization.

2. To avoid having to make classes of constituent elements or their
subclasses serializable.

To format the serialized output in any way we want.

3

4. To customize serialization based on user input.

5. To customize serialization based on the streaming context.
6

To perform any action before or after serialization.

Method 1: Complete control over serialization

There is a way to completely control the output of the serialization, and
thereby cover the first five aspects of customization. This is done by
making the [Serializable] class implement the 1Serializable interface. As
can be expected, this interface entails:

1. Implementing the method Getobjectbata which overrides the
serialization performed by a formatter.

2. Implementing a special constructor which overrides the

deserialization performed by a formatter.

Note: The class implementing the ISerializable interface should still be marked as
[Serializable]. Otherwise, the BinaryFormatter or the SoapFormatter will not
serialize its instance.

Vineet Sharda

Let’s make a few changes to our earlier code, to get more control over
the serialization. Also, this time, let’s use the SoapFormatter since the
output in the Soap format will be easier to analyze.

Sample code

Namespace needed by the class:

//Namespace containing SerializationInfo and StreamingContext
using System.Runtime.Serialization;

Class:

// Step 1la
[Serializable]
public class ClsSerialize:ISerializable
{
// Step 1b - special constructor this time
public ClsSerialize() { }
public ClsSerialize(
SerializationInfo info, StreamingContext context
Y{ // implementation discussed later }
// Step 5 - new step
public void GetObjectData(
SerializationInfo info, StreamingContext context
H

// @) Output the data in any format
info.Addvalue("Name", this.sName);
info.AddValue(
"NumberOfDependents”, this.iDependents
)s
// b) Make use of the client input
object oUserData = context.Context;
if (oUserData != null){
info.AddValue("CompanyName", (string)oUserData);
b
// c) Make use of the StreamingContextStates sent by the client
if(
(

((int)context.State) &

((int)StreamingContextStates.CrossMachine)
) !=0
H

info.AddValue("Machine", Environment.MachineName);
¥
}

// The rest of the class implementation remains the same

Include reference and namespaces needed by the client code:

// Add a reference to the
// "System.Runtime.Serialization.Formatters.Soap.d1ll"
// Namespace containing the SoapFormatter

Vineet Sharda

using System.Runtime.Serialization.Formatters.Soap;
//Namespace containing SerializationInfo and StreamingContext
using System.Runtime.Serialization;

Client code:

// Steps 1c

// Initialize the object to be serialized - same as before
// Step 2

// Open the file stream - same as before

// Step 3

SoapFormatter Formatter = new SoapFormatter();

// Step 3b - make use of customized Serialization

// Pass
// (i) StreamingContextStates
// (ii) Any object that GetObjectData() can process

StreamingContextStates stt =
StreamingContextStates.Persistence | StreamingContextStates.Other;
Formatter.Context = new StreamingContext(stt, "NewIdea Inc");
// Step 4
// Serialize - same as before

Code analysis

Class

1. The two additions to the class, as necessitated by the 1serializable
interface, are the Getobjectbata function for serialization and a new
constructor for deserialization (explained in the Custom
Deserialization section).

2. A complete control is demonstrated by the Getobjectbata function
implementation.

a) We pass those fields to the output that we want.
b) The names of these fields can be anything that we want.

c) If we have a field of user-defined type, then we do not have to take
care of its polymorphism since output will only be read off the fields
/ properties / functions of the superclass (the subclass is not known
to the serializable class). If we pass a field of user-defined type
directly to the info.Addvalue, then the various scenarios of arrays and
polymorphism remain in effect.

d) Polymorphism related to serializing an array follows simple
polymorphism principles.

In other words, all the advanced scenarios, discussed earlier, can be

easily covered with this level of control. All this is done simply by using
the Addvalue method of the serializationInfo parameter.

Vineet Sharda

3. This mechanism gives us two additional levels of control, by
providing the StreamingContext parameter.

a) Using the context property of this parameter, we can allow the
Formatter on the client side to pass an object (State) to the
serialization process, which we can use. In our sample code, we are
allowing the client to send a string, which we are passing onto the
serialization output ("Newldea Inc"). We can allow a state of any
type and create a sophisticated code on the basis of this state.

b) The Formatter can specify a combination of its StreamingContextStates
and we can base our output on that, as we have done in step c of the
GetObjectData().

Client

The Formatter can send the StreamingContextStates and its state — both of
which can be used by Getobjectpata. The simplest way to accomplish this
is to instantiate a StreamingContext object from these two parameters and
then assigning this instance to the context property of the Formatter. See
step 3b of the client code.

The next table shows all the available StreamingContextStates. You should
use them to make complete use of Customized Serialization.

Flags of the streamingContextStates enumeration

Member Description

All The serialized data can be transmitted to or received from any of
the other contexts.

Clone The object graph is being cloned.

CrossAppDomain The source or destination context is a different AppDomain.

CrossMachine The source or destination context is a different computer.

CrossProcess The source or destination context is a different process on the
same computer.

File The source or destination context is a file.

Other The serialization context is unknown.

Persistence The source or destination context is a persisted store - a
database, a file, etc.

Remoting The data is remoted to a context in an unknown location.

Vineet Sharda

10

Serialized Output

The serialized output of the above code looks like the following. Verify if
this is what you expected.

<SOAP-ENV:Envelope xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xmlns:xsd="http://www.w3.0rg/2001/XMLSchema” xmlns:SOAP-
ENC="http://schemas.xmlsoap.org/soap/encoding/" xmlns:SOAP-
ENV="http://schemas.xmlsoap.org/soap/envelope/"
xmlns:clr="http://schemas.microsoft.com/soap/encoding/clr/1.0" SOAP-
ENV:encodingStyle="http://schemas.xmlsoap.org/soap/encoding/">
<SOAP-ENV:Body>

<al:ClsSerialize id="ref-1"
xmlns:al="http://schemas.microsoft.com/clr/nsassem/Proj/Proj%2C%20Version
%3D1.0.0.0%2C%20Culture%3Dneutral¥%2C%20PublicKeyToken%3Dnull" >

<Name id="ref-3">Aaron</Name>

<NumberOfDependents>3</NumberOfDependents>

<CompanyName id="ref-4">NewIdea Inc</CompanyName>

</al:ClsISerialize>

</SOAP-ENV:Body>

</SOAP-ENV:Envelope>

Method 2: Perform actions before or after
serialization

We may want to log somewhere that we are going to serialize an object,
or that we have serialized an object. In this case, we just need to mark
the functions that we want to run before serializing takes place with the
[onserializing] attribute and the functions that we want to run after the
serialization finishes with the [onSerialized] attribute.

Like all eventhandlers, these functions must conform to a signature,

which is:

void Func(StreamingContext context)

The context argument is the same as the one used in the GetobjectData

function. Having learnt about its strength, use it with full ingenuity.

Here are a few interesting flexibility scenarios allowed with regards to

these attributes:

1. They can be applied to any number of functions.

2. The same function can have both the attributes applied to it, as also
the [OnDeserializing] and [OnDeserialized], which are explained in
the Custom Deserialization section.

3. If an attribute is applied to the parent class, then that function runs
before the corresponding function of the child class.

Note: The [onSerializing], [OnSerialized], [OnDeserializing],

Vineet Sharda

1

[OnDeserialized] attributes only work for a BinaryFormatter and not for a
SoapFormatter.

Custom Deserialization

If we have customized our serialization, we will have to mirror it in our
deserialization as well.

There are 3 methods of accomplishing this.

Method 1: Special Constructor

The special constructor left out in the Custom Serialization section is
implemented here. There will be no change in the client code from the 4
basic steps of deserialization (with a proper Formatter type).

Sample code

Class:

// Step 1la
[Serializable]
public class ClsSerialize:ISerializable

// Step 1b - special constructor this time
public ClsSerialize() { }
public ClsSerialize(
SerializationInfo info, StreamingContext context
>

// (i) Get data from the serialized file
this.sName = info.GetString("Name");
this.iDependents = info.GetInt32 ("NumberOfDependents");
// (ii) Fill up the data which is not expected from the
// serialized file
this.iAge = this.GetAgeFromDatabase(this.sName);
// (iii) Use the extra input given by the serialization client
try{
string sCompany = info.GetString("CompanyName");
// Log somewhere the name of the company which sent this
// serialized file

catch (Exception ex) { }

try{
string sMachine = info.GetString("Machine");
// Log somewhere that the serialized file came from some
// other machine

catch (Exception ex) { }
}

// Helper function

Vineet Sharda

12

public int GetAgeFromDatabase(string PersonName){
// Get age for this person from database

}
Note that the above code is simply a mirror image of the code in
GetObjectData(). Simply by using the Getstring(), GetInt32() and other
such functions of the serializationInfo parameter, the fields of the
instance are created.

Advanced Scenarios

Scenario 1: A field which was not serialized

Populate that field, as you would normally do —just as we have done for
iAge.

Scenario2: Deserializing an array or any collection

As stated for serialization, nothing special to be done.

Scenario 3: An enum field

Since underlying type of enum is int, just use the GetInt32() method.

Scenario 4: A field of a user-defined type

Use the Getvalue(string, Type) function. The first parameter is the name
of the tag in the serialized file. The second parameter is the type that we
are expecting. It returns an instance of object type. This instance can be
cast to the type which we are expecting.

Scenarios 5, 6: An array field, polymorphism

Same action as for Scenario 4.
Tip: If you try to combine a few scenarios, as you did in the Advanced Scenarios
section of serialization, you might figure out new exam questions yourself! From

the Scenarios 4, 5 and 6, it might have become clear that all these
combinations will require the same action as explained for Scenario 4.

Method 2: Perform actions before or after
deserialization

This method is same as described in the Perform actions before or after
serialization section, including the note following it. Just replace
[OnSerializing] with [OnDeserializing] and [OnSerialized] with
[OnDeserialized], and vice-versa.

Vineet Sharda

13

Method 3: Perform actions after deserialization

Remember, the [onDeserializing] and [OnDeserialized] attributes work
only for BinaryFormatter and not for a SoapFormatter. In any case, for
simple actions that a Formatter would like to perform after
deserialization, this method is suitable. All that we have to do is make
the class inherit the IDeserializationCallback interface and implement its
OnDeserialization method. The signature of this method is:

void OnDeserialization(Object sender);

Tlp The IDeserializationCallback.OnDeserialization implementation
executes before the function(s) marked with the [onDeserialized] attribute

XML Serialization

XML Serialization gives the serialized output in the XML format. The
advantages are the same as for the Soap formatted serialization: human-
readability, passing through firewalls and universal applicability.

There is no difference between the 4 basic steps of Binary/Soap
Serialization/Deserialization and XML Serialization/Deserialization.
There are 2 minor modifications in the implementation, though.
a) Step la)is modified to:
Make the class of the object to be serialized, public.
b) Step 3 is modified to:
Create an instance of a class called xmlserializer, say Formatter,
passing the type of the instance to be parameterized, as a constructor
argument.

Sample code

Class:

// Step 1la
public class ClsXmlSerialize

// Step 1b - optional if there is no other constructor
public ClsSerialize() { }
public string sName;
public int iDependents;
private int iAge;
public int Age
{
get{return this.iAge;}
set{this.iAge = value;}

Vineet Sharda

14

Namespace needed by the client code:

// Namespace containing the XmlSerializer
using System.Xml.Serialization;

Client code for serialization:

// Step 1c
ClsXmlSerialize oSerIn = new ClsXmlSerialize();
oSerIn.sName = "Eugene";

oSerIn.iDependents = 1;

oSerIn.Age = 23;

// Step 2

string sFile = @"C:/Temp/" + oSerIn.sName + ".bin";
System.IO.FileStream fsOut;

try{
fsOut = System.IO.File.OpenWrite(sFile);
}

catch{ return; }

// Step 3

XmlSerializer Formatter = new XmlSerializer(typeof(ClsXmlSerialize));
// Step 4

try{
Formatter.Serialize(fsOut, oSerIn);

X
finally{ fsOut.Close(); }

Serialized Output

<?xml version="1.0"?>
<ClsXmlSerialize xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xmlns:xsd="http://www.w3.0rg/2001/XMLSchema">
<sName>Eugene</sName>
<iDependents>1</iDependents>
<Age>23</Age>
</ClsXmlSerialize>

iage did not appear in the serialized output since it is a private field.

Note: Public properties, like Age in our example, appear in the XML serialized
output.

Client code for deserialization:

// Step 2

string sFile = @"C:/Temp/Eugene.xml";
System.IO.FileStream fsIn;

try{
fsIn = System.IO.File.OpenRead(sFile);

catch { return; }
// Step 3
XmlSerializer Formatter = new XmlSerializer(typeof(ClsXmlSerialize));

Vineet Sharda

15

// Step 4
ClsSerialize oSerOut;

try{
oSerOut = (ClsXmlSerialize)Formatter.Deserialize(fsIn);

¥
finally { fsIn.Close(); }

So, as you can see, with two minor changes: one in marking the class
and other in instantiating the Formatter, we take our knowledge to XML
Serialization.

Advanced Scenarios in XML Serialization

Scenario 1: Prevent serialization of a field/property
Mark it with the [XmlIgnore] attribute.

Scenario 2: Serializing array or any collection

Remember, unlike the BinaryFormatter or the SoapFormatter, the
xmlSerializer is created on the basis of the class, the instance of which is
to be serialized. Now, we have to serialize an instance of a class array.
So, just replace the class with the array of the class in the instantiation of
the xmlserializer and you will be done!

Observe that there is no change to the pattern of serialization.

The output will show thus:

<ArrayOfCls>
<Cls>....</ Cls >
< Cls >....</ Cls >
< ArrayOfCls >

Scenario 3: A field/property of a user-defined type

For the same reason as for Scenario 2, at the time of creation of the
xmlSerializer, the classes of all the fields/properties are also marked and
compiled for serialization. So, we have to do nothing special.

Scenario 4: An enum field

Nothing special needs to be done.

Scenario 5: Polymorphism

Mark the parent class with the xmlInclude attribute as:
[XmlInclude(typeof(ChildClass))]

This will allow the xmlserializer to include the definition of the child
class in its fold, enabling it to serialize its instance. In other words,

Vineet Sharda

16

Serialization does not follow the inheritance rule. It has to be specified
explicitly that the children are ready to be serialized.

Note: As you will see from Scenarios 9 and 10, this is not a good approach. Try
making the xm1serializer for the class which you expect to Serialize.

Tip: You should try combining a few scenarios. Some of them are given below.

Scenarios 6, 7, 8: Serializing an array or collection of a user-defined type,
an array field, or when a field is an array of user-defined elements

All these scenarios will yield the same result, and that is: stick with the 4-
step process.

Scenario 9: Polymorphism over field

Combination of Scenarios 3 and 5 — parent class should be marked with
an [XmlInclude(typeof(ChildClass))] attribute.

Scenario 9 again: Polymorphism over field

With the xmlInclude approach, the burden, of making the child class
available for serialization as the parent class, lies with the parent. This
may not always be possible. Most of the time, the classes are not even
your own. So, the alternative is to shift that burden to the field. This is
done by marking the field with the [xmlElement] attribute as:

[XmlElement(Type = typeof(ParentClass))]
[XmlElement(Type = typeof(ChildClass))]

This approach also gives us the ability to name the XML element
whatever we want, based on its type. For example, if we use the
following field in the class, the serialized output will show an oField
element when the instance is of the ParentClass type and a childrield
element when the instance is of the childclass type.

[XmlElement(Type = typeof(ParentClass))]
[XmlElement(Type = typeof(ChildClass), ElementName = “ChildField”)]
public ParentClass oField;

Note: We alsoneed to specify the xm1Element attribute for the parent class when
we shift the burden to the field.

Scenario 10: Polymorphism over an array field

Combination of Scenarios 5 and 7 — parent class should be marked with
an [XmlInclude(typeof(ChildClass))] attribute.

Vineet Sharda

17

Scenario 10 again: Polymorphism over an array field

As in the last scenario, putting the burden, of enumerating the child
classes, on the parent class is not advisable. The alternative we have in
this case is the xmlArrayItem attribute, which is applied in the same way
as XmlElement:

[XmlArrayItem (Type = typeof(ParentClass))]
[XmlArrayItem (Type = typeof(ChildClass), ElementName = “ChildField”)]
public ParentClass[] ArrField;

In the above example, using the optional ElementName property, an array
element will appear in the XML output as ParentClass when the instance
is of the ParentcClass type and as childrield when the instance is of the
ChildClass type.

Just as for the xmlElement attribute, we have to specify the xmlArrayItem
attribute for the parent class as well.

Note: [nallthe declarative approaches to handle polymorphism, the additional child
fields do appear in the serialized output.

Custom XML Serialization

Method 1: Declarative

We can achieve simple customization using the attributes themselves.
We have discussed the xmlIgnore, XmlInclude, XmlElement and XmlArrayItem
already. Other salient attributes and their prominent properties are
discussed here. To learn more easily, let’s distribute these attributes into
4 groups:

Group 1: Attributes over classes

Attribute Property Use

Xmlinclude Type Allow polymorphism

XmIRoot Works only if the instance is the only element to be serialized
ElementName Customize the name of the element for this class
IsNullable Specify xsi:null in the serialized output if

instance is null
Namespace Specify the XML namespace of the class
XmiType Namespace Specify the XML namespace of the class
TypeName Customize the name of the element for this class

Vineet Sharda

18

Group 2: Attributes over members of an enum

Attribute
XmIEnum

Property Use

Name Customize the name of the value to show when a
field is of this enum type and has this particular
enum value.

Group 3: Attributes over normal members

Attribute
Xmlignore
XmlAttribute

XmlElement

XmlText

Property Use
Ignore the field from serialization

Specify a field/property to show up as an attribute in the serialized
output.

AttributeName Customize the name of the attribute

Namespace Specify the XML namespace of the class of the
field

Specify a field/property to show up as an element in the serialized
output

ElementName Customize the name of the element

IsNullable Specify xsi:null in the serialized output if
instance is nul1

Namespace Specify the XML namespace of the class of the
field

Type Allow polymorphism

Specify a field/property to show up as text (neither element nor
attribute) in the serialized output.

Type Allow polymorphism

Group 4: Attributes over members which are/return arrays

Attribute
XmlArray

XmlArrayltem

Property Use
Specify the XML output for the array
ElementName Customize the name of the element

IsNullable Specify xsi:null in the serialized output if
instance is nul1l

Namespace Specify the XML namespace of the array class
Specify the XML output for an array element
ElementName Customize the name of the element

IsNullable Specify xsi:null in the serialized output if
instance is nul1l

Vineet Sharda

19

Namespace Specify the XML namespace of the class of the
array element

Type Allow polymorphism

TipS' 1. Only one xm1Attribute attribute can be used for one field.

2. xmlText attribute can be applied to only one member in a class;
otherwise you will get a System.InvalidOperationException at
runtime.

3. Put the field with the xm1Text attribute at the very end of the class
implementation. The indentation of the XML output tends to be lost after
the output of such a field.

Let’s use these elements in the following sample code.

Sample code

Namespace needed by the classes and the client code:

// Namespace containing the Xml attributes and the XmlSerializer
using System.Xml.Serialization;

Classes:

[Xm1Type(TypeName="House"), XmlInclude(typeof(ClsApt))]

public class ClsXmlHouseAttribs {
[XmlElement (ElementName = "objNumber", Type = typeof(object))]
[XmlElement (ElementName = "strNumber", Type = typeof(string))]
[XmlElement (ElementName = "Number", Type = typeof(int)) 1
public object sNumber;

public string sStreet;
[XmlIgnore] public string sState;
[XmlAttribute(AttributeName = "ZipCode")] public string sZip;

[XmlArray(ElementName="People")]
[XmlArrayItem(Type = typeof(object))]
[XmlArrayItem(ElementName = "strOccupant”, Type = typeof(string))]
[XmlArrayItem(ElementName = "OccupyingPerson",
Type = typeof(ClsPerson))]
public object[] Occupants;

[XmlText] public string sCity;
}

public class ClsApt : ClsXmlHouseAttribs { public string sOwner; }
public class ClsPerson { public AgeGroup AgeGrp; }

public enum AgeGroup {
Belowl8, Over65, [XmlEnum(Name="EarningMember")] Betweenl18And65
}

Vineet Sharda

20

Client code:

// Step 1c

ClsXmlHouseAttribs oSerIn = new ClsXmlHouseAttribs();

oSerIn.sNumber = "24-E"; oSerIn.sStreet = "Washington St";
oSerIn.sCity = "New York"; oSerIn.sState = "NY"; oSerIn.sZip = "10003";
// Array field with elements of different types

oSerIn.Occupants = new object[] { "Harry", new object() };

// Class to be serialized is child of the class expected to be serialized
ClsApt oSerIn2 = new ClsApt();

oSerIn2.sNumber = 241; oSerIn2.sStreet = "W St";
oSerIn2.sCity = "New York"; oSerIn2.sState = "NY";
oSerIn2.sZip = "10001"; oSerIn2.sOwner = "Bleem Inc";

// Testing the use of [XmlEnum] Attribute

ClsPerson P1 = new ClsPerson(); P1.AgeGrp
ClsPerson P2 = new ClsPerson(); P2.AgeGrp
oSerIn2.0ccupants = new ClsPerson[] { P1, P2 };

AgeGroup.Between18And65;
AgeGroup.Overe65;

ClsXmlHouseAttribs[] ArrHouses =
new ClsXmlHouseAttribs[] { oSerIn, oSerIn2 };

// Step 2
string sFile = @"C:/Temp/ArrHouses.xml";
System.IO.FileStream fsOut;

try{
fsOut = System.IO.File.OpenWrite(sFile);
}

catch { return; }
// Step 3 - XmlSerializer for an array
XmlSerializer Formatter =
new XmlSerializer(typeof(ClsXmlHouseAttribs[]));
// Step 4

try{
Formatter.Serialize(fsOut, ArrHouses);

X
finally { fsOut.Close(); }

Serialized Output

Here is the serialized output of the above code. Verify if this is what you
expected.

<?xml version="1.0"?>
<ArrayOfHouse xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xmlns:xsd="http://www.w3.0rg/2001/XMLSchema">
<House ZipCode="10003">
<strNumber>24-E</strNumber>
<sStreet>Washington St</sStreet>
<People>
<strOccupant>Harry</strOccupant>
<anyType />
</People>New York</House>
<House xsi:type="ClsApt" ZipCode="10001">
<Number>241</Number>

Vineet Sharda

21

<sStreet>W St</sStreet>
<People>
<OccupyingPerson>
<AgeGrp>EarningMember</AgeGrp>
</0ccupyingPerson>
<OccupyingPerson>
<AgeGrp>0ver65</AgeGrp>
</0ccupyingPerson>
</People>New York<sOwner>Bleem Inc</sOwner></House>
</ArrayOfHouse>

Method 2: Programmatic

To achieve even more control over the XML serialization, make the class
implement the IXxmlserializable interface. This will entail implementing 3
functions: Writexml, Readxml and GetSchema.

Sample code:

Namespaces needed by the class and the client code:

// Namespace containing IXmlSerializer

using System.Xml.Serialization;

// Namespace containing XmlWriter and XmlReader
using System.Xml;

Modified class:

public class ClsXmlHouseAttribs : IXmlSerializable {
// Same fields as before

// Functions required by the IXmlSerializable interface
public void WriteXml(XmlWriter writer) {
writer.WriteAttributeString(“ZipCode", this.szZip);
if (this.sNumber is int) {
writer.WriteElementString ("Number", this.sNumber.ToString());

¥
else {

writer.WriteElementString("sNumber"”, this.sNumber.ToString());
¥

writer.WriteString(this.sCity);
}

public void ReadXml(XmlReader reader)
{ // implementation discussed later }

public System.Xml.Schema.XmlSchema GetSchema() { return null; }

Client code:

// Step 1c
// Initialize the object to be serialized - same as before
// Step 2 - XmlWriter instead of FileStream

Vineet Sharda

22

string sFile = @"C:/Temp/ArrHousesIXmlSerializable.xml";
XmlWriter fsOut;

try {
fsOut = XmlWriter.Create(sFile);
}

catch { return; }
// Step 3 - XmlSerializer for an array - same as before
// Step 4 - Serialize - same as before

Note: A classimplementing the IXmiSerializable interface cannot have any XML
attribute applied to its declaration. If you try, you will get a runtime error.

The fields can have XML attributes applied to them but these attributes will
have no effect on serialization.

Serialized output

<?xml version="1.0" encoding="utf-8"?><Array0fClsXmlHouseAttribs
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xmlns:xsd="http://www.w3.0rg/2001/XMLSchema">
<ClsXmlHouseAttribs ZipCode="10003"><sNumber>24-E</sNumber>
New York</ClsXmlHouseAttribs>
<ClsXmlHouseAttribs ZipCode="10001"><Number>241</Number>
New York</ClsXmlHouseAttribs>
</ArrayOfClsXmlHouseAttribs>

Code analysis

Basically, besides replacing a FileStream with an Xmlwriter, you are doing
nothing but creating an XML document yourself. So, there is nothing
extraordinary to memorize here.

As in GetObjectData() for binary/soap serialization, we have complete

control over XML Serialization.

a) We pass those fields to the output that we want.

b) The names of these fields can be anything that we want.

c) If we have a field of user-defined type, then we do not have to take
care of its polymorphism since output will only be read off the fields
/ properties / functions of the superclass (the subclass is not known

to the serializable class). Passing a field of user-defined type or an
array type directly to a Write method is tricky, so avoid that.

d) Polymorphism related to serializing an array follows simple
polymorphism principles.
For simplification, we are leaving out any output related to the occupants

field, the clsperson class and the AgeGroup enum. We can get a customized
output in the same manner as has been shown for the other fields.

Vineet Sharda

23

One trivially interesting portion is the GetSchema method which returns
null. Let it suffice to say that this exact implementation is advised by
Microsoft.

The real interesting portion is the Write function set available to the
Xmlwriter class, which we can use, although no one stops us from writing
the entire output using its Writevalue or WriteRaw method.

Below is a list of salient Write functions of this class, which you can use
with complete ingenuity. You can find the complete list on the MSDN
website.

xmlwriter functions

Method Description
WriteAttributeString Writes an attribute with the specified value.
WriteChars Writes text one buffer at a time.

Writes out a comment <!--...--> containing the specified
WriteComment text.
WriteElementString Writes an element containing a string value.
WriteEndAttribute Closes the last WriteStartAttribute call.

Closes any open elements or attributes and puts the
WriteEndDocument writer back in the Start state.

Closes one element and pops the corresponding
WriteEndElement namespace Scope.
WriteRaw Writes raw markup manually.
WriteStartAttribute Writes the start of an attribute.
WriteStartDocument Writes the XML declaration.
WriteStartElement Writes the specified start tag.
WriteValue Writes a single simple-typed value.

Custom XML Deserialization

Method 1: Declarative

Since the class knows itself, the recreation of the fields based on any
criterion (attribute or element, a particular element name or another,
etc.) is a moot question.

The only scenario worth thinking about is the field that was not
serialized. Remember, when we use xmlSerializer, the burden of
managing serialization / deserialization is on this xmlserializer rather

Vineet Sharda

24

than the class. So, the logical way to get something done after
deserialization finishes, is to create a callback or simply write the code
after calling the Deserialize method. There is a delegate available
(xmlserializationReadCallback) for the first approach but Microsoft does
not recommend using it. The second approach is self-explanatory.

Method 2: Programmatic

We accomplish this by using the Readxml method of the IxmlSerializable
interface. Just remember that it should be a mirror image of writexml.
Here is the implementation of Readxml method for our clsxmlHouseAttribs
class:

public void ReadXml(XmlReader reader)

{
this.sZip = reader.GetAttribute("ZipCode");
reader.ReadStartElement();// Read off beginning of ClsXmlHouseAttribs
string sNumber = reader.ReadElementContentAsString();
int iNumber;
if (int.TryParse(sNumber, out iNumber)) {
this.sNumber = iNumber;

}
else {
this.sNumber = sNumber;

}
this.sCity = reader.ReadContentAsString();
reader.ReadEndElement(); // Read off end of ClsXmlHouseAttribs

}
Advanced Scenarios

Scenario 1: A field which was not serialized

Populate that field, as you would normally do —just as in Advanced
Scenarios under Custom Deserialization.

Scenario2: Deserializing an array
Nothing special.

Scenario 3: An enum field

Since the underlying type of enum is int, reader.ReadContentAsInt followed
by conversion to enum will do our task.

Scenario 4: A field of a user-defined type

It was advised in the code analysis of writexml not to use any Write
method to write a field of user-defined type directly. Conversely,

Vineet Sharda

25

populate the fields of such a field by reading off the XML

elements/attributes one by one.

Scenarios 5, 6: An array field, polymorphism

Same action as for Scenario 4.

Tip: Try combining a few scenarios, as you have been doing.

Just like xmlwriter, XmlReader also has many useful functions, some of
which are given below. For the exam, knowledge of all the methods is
not necessary. Nonetheless, you can get the complete list from the

MSDN website.

XmlReader functions

Method
GetAttribute
IsStartElement
LookupNamespace

MoveToAttribute
MoveToContent
MoveToElement

MoveToFirstAttribute
MoveToNextAttribute
Read
ReadContentAs

ReadContentAs<Type>

ReadElementContentAs

ReadElementContentAs<Type>

Description
Gets the value of an attribute.
Tests if the current content node is a start tag.

Resolves a namespace prefix in the current
element's scope.

When overridden in a derived class, moves to the
specified attribute.

If the node is not a content node, the reader skips
ahead to the next content node or end of file.

Moves to the element that contains the current
attribute node.

Moves to the first attribute.
Moves to the next attribute.
Reads the next node from the stream.

Reads the content as an object of the type
specified.

Reads the content at the current position as the

type in the method name. Examples are:
ReadContentAsBoolean,
ReadContentAsDateTime,
ReadContentAsDecimal,
ReadContentAsDouble, ReadContentAsFloat,
ReadContentAsInt, ReadContentAsLong,

ReadContentAsObject, ReadContentAsString.

Reads the current element and returns the
contents as an object of the type specified.

Reads the current element value as the type in
the method name. Examples are:

Vineet Sharda

26

ReadElementString
ReadEndElement
ReadInnerXml
ReadOuterXml
ReadStartElement
ReadString
ReadToDescendant

ReadToFollowing
ReadToNextSibling

Skip

ReadElementContentAsBoolean,
ReadElementContentAsDateTime,
ReadElementContentAsDecimal,
ReadElementContentAsDouble,
ReadElementContentAsFloat,
ReadElementContentAsInt,
ReadElementContentAslLong,
ReadElementContentAsObject,

ReadElementContentAsString.

Helper method for reading simple text-only
elements.

Checks that the current content node is an end
tag and advances the reader to the next node.

Reads all the content, including markup, as a
string.

Reads the content, including markup,
representing this node and all its children.

Checks that the current node is an element and
advances the reader to the next node.

Reads the contents of an element or text node as
a string.

Advances the XmIReader to the next matching
descendant element.

Reads until the named element is found.

Advances the XmIReader to the next matching
sibling element.

Skips the children of the current node.

Method 3: Programmatic - Use WriteXml and

ReadXml directly

This method is just a slight (and easier) twist on the last method. Instead

of creating an xmlserializer and then calling its Serialize / Deserialize
method, we can serialize an instance by calling its writexml method and
deserialize by calling its Readxml method.

Note: The pataset classimplements Ixmlserializer, just as we have done,
enabling the client to call the writexml and Readxml methods on its instance.

Vineet Sharda

Memory Sheet

Binary Serialization

class -
public constructor,[Serializable]

BinaryFormatter.Serialize(
Stream, Object)
OR
Object =
BinaryFormatter.Deserialize(Stream)

Advanced Scenarios

Prevent serialization of a field -
[NonSerialized]

Serialize an array or any
collection - Nothing special

Polymorphism/field of user-defined
type - make appropriate classes
serializable

Custom Serialization

ISerializable.GetObjectData
SerializationInfo.AddValue,
StreamingContext

[OnSerializing], [OnSerialized]

Custom Deserialization

ISerializable: special constructor
SerializationInfo.GetValue,
StreamingContext

[OnDeserializing], [OnDeserialized]

27

XML Serialization

class - public, public constructor

Formatter =
new XmlSerializer(typeof(Cls))

Advanced Scenarios

Prevent serialization of a field -
[XmlIgnore]

Serialize an array or any
collection / field of user-defined
type or array type -

Nothing special

Polymorphism -
[XmlInclude] on parent class

Polymorphism over field -
[Xm1lElement]

Polymorphism over array field -
[XmlArrayItem]

Other attributes:
[XmlEnum], [XmlAttribute],
[XmlText], [XmlArray]

Programmatic Custom XML
Serialization

IXmlSerializable.WriteXml:XmlWriter
WriteAttributeString,
WriteElementString, WriteString,
WriteValue, WriteRaw

Programmatic Custom XML
Deserialization

IXmlSerializable.ReadXml: XmlReader
GetAttribute,
ReadElementContentAsString,
ReadString

Vineet Sharda

References

http://msdn.microsoft.com/en-
us/library/ms973893.aspx#objserializ_topich

http://msdn.microsoft.com/en-

us/library/system.runtime.serialization.streamingcontextstates.aspx

http://msdn.microsoft.com/en-

us/library/system.runtime.serialization.onserializingattribute.aspx

http://msdn.microsoft.com/en-
us/library/system.xml.xmlwriter methods.aspx

http://msdn.microsoft.com/en-

us/library/system.xml.serialization.ixmlserializable.getschema.aspx

http://msdn.microsoft.com/en-
us/library/system.xml.xmlreader members.aspx

28

Vineet Sharda

http://msdn.microsoft.com/en-us/library/ms973893.aspx#objserializ_topic5
http://msdn.microsoft.com/en-us/library/ms973893.aspx#objserializ_topic5
http://msdn.microsoft.com/en-us/library/system.runtime.serialization.streamingcontextstates.aspx
http://msdn.microsoft.com/en-us/library/system.runtime.serialization.streamingcontextstates.aspx
http://msdn.microsoft.com/en-us/library/system.runtime.serialization.onserializingattribute.aspx
http://msdn.microsoft.com/en-us/library/system.runtime.serialization.onserializingattribute.aspx
http://msdn.microsoft.com/en-us/library/system.xml.xmlwriter_methods.aspx
http://msdn.microsoft.com/en-us/library/system.xml.xmlwriter_methods.aspx
http://msdn.microsoft.com/en-us/library/system.xml.serialization.ixmlserializable.getschema.aspx
http://msdn.microsoft.com/en-us/library/system.xml.serialization.ixmlserializable.getschema.aspx
http://msdn.microsoft.com/en-us/library/system.xml.xmlreader_members.aspx
http://msdn.microsoft.com/en-us/library/system.xml.xmlreader_members.aspx

