
1

Vineet Sharda

Windows Services
Why do we need a Windows Service?
Whenever we want to run certain code without logging into the machine

or without making a GUI for that code, we should create a Windows

Service.

Look and Feel
The best method to start working on Windows Service is to check out

the existing Windows Services. Let’s open up the Services snap-in.

Depending on your Windows OS, this can be done in one of the

following ways:

1. Start  Control Panel  Administrative Tools  Services.

2. Start  Control Panel  Administrative Tools  Computer

Management  Services and Applications on the left pane 

Services.

3. Start  Control Panel  Performance and Management  Services

4. Start  Run  Services.msc

Here you will see all the services registered on your machine, with the

details described in the following table.

Details of a Service

Property Value Description

Name <Any> Name of the service

Description <Any> Description of the service

Status <Blank>

Started

Paused

The service is not currently running.

The service is currently running.

The service is currently paused.

Startup
Type

Manual

Automatic

Disabled

The service will not start when the machine starts.

The service will start when the machine starts.

The service cannot be started.

2

Vineet Sharda

Log On As Local System

Network Service

Local Service

<Any other
account>

The most powerful account. It can work on any
Operating System file of the machine. Will behave
with a network in the same manner as the Network
Service account.

An account with reduced privileges, equivalent to an
authenticated local user account. Also, when the
service tries to access resources over a network, it
will provide the authentication details of the
machine. So, the network will allow the access to its
resources as it allows to that machine.

Same as Network Service account. But when the
service tries to access resources over a network, it
will provide no authentication details. So, the
network will allow access to only those resources
which are public.

The service will run with all the privileges of this
account. The account can be a network account.

Right click on any service. You will see that you have the options Start,

Stop, Pause, Resume, Restart. Some of these options will be disabled. For

example, if the service status is Started, then the Start option will be

disabled and if it is blank, then the Stop, Pause, Resume, Restart options

will be disabled. Most of the services will have Pause and Resume

options disabled. All these options are self-explanatory.

Configuring a service
Double click on any service. This will open up its properties with the

following tabs: General, Log On, Recovery, Dependencies. The

properties discussed till now can be set using the General or the Log On

tabs. You should discover what can be done under the Recovery tab or

what is seen under the Dependencies tab. The Remote Procedure Call

(RPC) service is a very good starting point to discover these options.

A Windows Service Skeleton
Let’s create a Windows Service and follow whatever comes our way,

very carefully.

1. Create a new Windows Service Project. Let’s call it WinServ.

2. As soon as you finish the last step, you will see that a service called

Service1 has already been added to the Project. Service1 will be open

3

Vineet Sharda

in the Design View. If you click on the main pane, the Properties

window (opened by pressing F4, if not already open) will show a

few properties. Let’s concentrate on some Boolean properties:

Properties of Service class

Member Description

AutoLog If set to true, the normal operations on the
service – started, stopped, paused - are
reported to the EventLog of the System.

CanHandlePowerEvent If set to true, the service can respond to
change in the power mode – for example
change from AC to battery or vice-versa,
etc..

CanHandleSessionChangeEvent If set to true, the service can respond to
logging on or off by a user.

CanPauseAndContinue If set to true, the service can be paused
and then resumed.

CanShutdown If set to true, the service can respond to the
shutting down of the machine.

CanStop If set to true, the service can be stopped.

3. Now, click on the link in the design view to go to the code view. You

will see the following auto generated code:

public partial class Service1 : System.ServiceProcess.ServiceBase {
 public Service1() {
 InitializeComponent();
 }

 protected override void OnStart(string[] args) { }

 protected override void OnStop() { }
}

Analysis

1. The class Service1 inherits from the class

System.ServiceProcess.ServiceBase.

2. Whatever code is written in the OnStart method will be executed

every time the service is started.

3. If the CanStop property of the service is set to true, the code in the

OnStop method will execute, whenever the service is stopped.

Similarly, you can override the methods OnPause and OnContinue,

which will work only when the CanPauseAndContinue property of the

service is set to true. Similarly, you can override the methods

OnSessionChange, OnShutDown and OnPowerEvent, which work only when

4

Vineet Sharda

the service properties CanHandleSessionChangeEvent, CanShutdown and

CanHandlePowerEvent, respectively, are set to true.

Filling up the skeleton
Let us make Service1 write the current time every minute, to a file.

Here is an approximate code that we will be tempted to write in the

OnStart method:

StrmWtr = new StreamWriter("C:\\Temp\\MinuteStamp.txt");
while(true) {
 StrmWtr.Write(DateTime.Now.ToString());
 Thread.Sleep(60000);
}

Although the program will compile correctly, this will cause the service

to try to start forever. Ultimately the operating system will stop trying

and give the message: Error 1053: The service did not respond to the start or

control request in a timely fashion.

Let us learn a concept here. When a service start is attempted, the OS

creates a process for this service and runs the code written in the OnStart

method. The service is considered started only when the code in the OnStart

method finishes. In the above code, this never happens, so the error was

generated.

Then how does a service work?
The technique is to initialize the variables in the OnStart method and

then start a separate thread which actually does the work. Since most of

the services do their tasks repeatedly, after some interval, instead of

using a simple Thread object and creating a loop and using the

Thread.Sleep method in it, we should use a Timer. If the code is to be run

just one, then the technique of creating a thread is good.

Sample Code
using System;
using System.IO;

public partial class Service1 : System.ServiceProcess.ServiceBase
{
 StreamWriter StrmWtr;
 System.Timers.Timer tmr;

 public Service1() {
 InitializeComponent();

5

Vineet Sharda

 }

 protected override void OnStart(string[] args) {
 this.StrmWtr = new StreamWriter("C:\\Temp\\MinuteStamp.txt");
 this.tmr = new System.Timers.Timer(60000);
 this.tmr.Elapsed += this.tmr_Elapsed;
 this.tmr.Start();
 }

 protected override void OnStop() {
 this.tmr.Stop();
 this.StrmWtr.Close();
 }

 protected void tmr_Elapsed(object sender, EventArgs e) {
 this.StrmWtr.WriteLine(DateTime.Now.ToString());
 }
}

That’s it; we just created a Windows Service!

Create another service – to experiment with various
properties

Let’s create another service in the same project by taking the following

steps:

1. Click on the Menu Item Project  Add New Item… Ctrl+Shift+A.

2. In the dialog box that opens, click on the item Windows Service in the

right hand pane. On the bottom of the dialog box, give the name of

the file as Serv2.cs. This will create a service called Serv2, just like

Service1.

You will see that the class that is created is also called Serv2 and this

class name is shown in the (Name) property in the Design View.

3. For its functionality, make it write to another file every 10 seconds.

4. Set its ServiceName property as Serv2_OS. This will not be seen

anywhere but it will be used by the OS, for example, at the time of

installation or uninstallation of the service or if we have to start the

service programmatically or from the command prompt.

5. Make its CanPauseAndContinue property true. That way, we will be able

to Pause and Resume the service in the Services snap-in.

6. Make its CanHandleSessionChangeEvent property true.

7. Besides changing the timer interval to 10000, here is the additional

code that we should write to make these actions meaningful:

protected override void OnPause() {
 base.OnPause();

6

Vineet Sharda

 this.tmr.Stop();
 this.StrmWtr.Close();
}

protected override void OnContinue() {
 base.OnContinue();
 this.StrmWtr = new StreamWriter(
 File.Open("C:\\Temp\\TenSecStamp.txt", FileMode.OpenOrCreate)
);
 this.tmr.Start();
}

protected override void OnSessionChange(
 SessionChangeDescription changeDescription
) {
 base.OnSessionChange(changeDescription);
 int iSessID = changeDescription.SessionId;
 switch(changeDescription.Reason) {
 case SessionChangeReason.SessionLogoff:
 this.StrmWtr.WriteLine("Logging off from Session "+iSessID);
 break;
 case SessionChangeReason.SessionLogon:
 this.StrmWtr.WriteLine("Logging onto Session " + iSessID);
 break;
 }
}

8. Open the Program.cs file.

9. Add Serv2 to the ServicesToRun array in the Main() method. Here is

how it will look like:

ServiceBase[] ServicesToRun =
 new ServiceBase[] { new Service1(), new Serv2() };
ServiceBase.Run(ServicesToRun);

Caution: If you forget the last step, you will get the error: Could not start the
service on local computer. Error 1083: the executable program that this
service is configured to run in does not implement the service, on trying
to run the service.

Running the Service
A Windows Service Project cannot be debugged like we debug a

Windows Forms Project or a Web Application Project. The only way to

check our code is to build the solution and install the service to the OS

and then run it from the Services snap-in. This involves 5 steps.

Step 1: Create installers
Open Service1 in the Design View. Right click on the main pane and

click Add Installer. That is all that is to it.

7

Vineet Sharda

Note, that a file ProjectInstaller.cs will be created and it will open up in

the Design View and show 2 components: serviceInstaller1 and

serviceProcessInstaller1.

Add another installer by right clicking on the Design View of Serv2.

Now, you will see only 1 additional component on the ProjectInstaller.cs

Design View. This is serviceInstaller2.

That means the Visual Studio creates:

1. One serviceInstaller for each service in the project.

2. One serviceProcessInstaller for the entire project.

Step 2: Set installer properties
For both the serviceInstallers, set the DisplayName and Description

properties. Set the StartType property if you want. These properties will

appear for the services, in the Services snap-in, as we observed in the

Look and Feel section.

Step 3: Build
Self-explanatory

Step 4: Install
1. Open the Visual Studio Command Prompt. You will find this under

the Start  Programs  Microsoft Visual Studio 2008  Visual

Studio Tools.

2. In the Command Window, navigate to the bin  Debug folder of

the Windows Services Project.

3. Enter the text installutil WinServ.exe and then press Enter.

4. In the Set Service Login window that opens up, enter the credentials

of the user as whom all the services will run. Make sure that you also

enter the domain in the username textbox. For example,

MyMachN\VineetS.

This is how this process will appear in the command window (some

portions are truncated).

C:\Documents and Settings\VineetS\My Documents\Visual Studio
2008\Projects\WinServ\WinServ\bin\Debug>installutil WinServ.exe

Microsoft (R) .NET Framework Installation utility Version 2.0.50727.3053
Copyright (c) Microsoft Corporation. All rights reserved.

8

Vineet Sharda

Running a transacted installation.

Beginning the Install phase of the installation.
See the contents of the log file for the
C:\...\WinServ\WinServ\bin\Debug\WinServ.exe assembly's progress.
The file is located at
C:\...\WinServ\WinServ\bin\Debug\WinServ.InstallLog.
Installing assembly 'C:\...\WinServ\WinServ\bin\Debug\WinServ.exe'.
Affected parameters are:
 logtoconsole =
 assemblypath = C:\...\WinServ\WinServ\bin\Debug\WinServ.exe
 logfile = C:\...\WinServ\WinServ\bin\Debug\WinServ.InstallLog

Installing service Service1...
Service Service1 has been successfully installed.
Creating EventLog source Service1 in log Application...
Installing service Serv2_OS...
Service Serv2_OS has been successfully installed.
Creating EventLog source Serv2_OS in log Application...

The Install phase completed successfully, and the Commit phase is
beginning.
See the contents of the log file for the
...
...
...
The Commit phase completed successfully.

The transacted install has completed.

Note: The OS used the ServiceName Serv2_OS in the installation log.

Step 5: Start the services
Start the services as we discussed in the Look and Feel section. Verify if

the values that you set for the DisplayName and Description properties

appear in the Services snap-in. Also, verify if you can Pause and then

Resume the Serv2 service (the name in the snap-in will be the one that

you gave in the DisplayName property of the serviceInstaller2).

Advanced Analyses

Startup Type
The Startup Type discussed in the Look and Feel section can be set up

for each service by clicking on its serviceInstaller in the Design View of

the ProjectInstaller.cs and setting the property StartType.

9

Vineet Sharda

Log On As
The Log On As attribute of all the services is set up at the time of

installation, as we did earlier. If you want to enter it at the time of

writing the code itself, you can do so by opening up the

ProjectInstaller.cs in the Code View and updating the constructor to:

InitializeComponent();
this.serviceProcessInstaller1.Account =
 System.ServiceProcess.ServiceAccount.User;
this.serviceProcessInstaller1.Username = "MyMachN\\VineetS";
this.serviceProcessInstaller1.Password = "MyPwd";

Tip: Usually, an enterprise policy is that the password of a user should be changed
regularly. If you are supposed to run a service as a particular user, make sure
that your account manager sets this account with the Password never expires
option. Otherwise, you will have to update the Log On As attribute of all your
services, every time the password changes.

If you want to set the Log On As attribute to other options that were

tabulated earlier, set the this.serviceProcessInstaller1.Account property

to the LocalService, LocalSystem or NetworkService value of the

System.ServiceProcess.ServiceAccount enum. In these cases, setting the

Username and the Password properties will have no effect on the service.

Note: We cannot set the Account, Username or Password properties differently for
services in the same project.

AutoLog
Open the Event Viewer under the Administrative Tools or under the

Administrative Tools  Computer Management. Click on the System

node. You should see the log entries every time some operation is done

on a service. If you don’t want to see these entries, you can set the

AutoLog property of the service to false.

SessionChangeDescription
We can know the details of change of a session while the service is

running since we have set the CanHandleSessionChangeEvent property true

and implemented the OnSessionChange method in the service Serv2. This is

done using the System.ServiceProcess.SessionChangeDescription parameter.

It has 2 important properties: SessionId (int: self-explanatory) and Reason.

Reason can be any one of the System.ServiceProcess.SessionChangeReason

enums: ConsoleConnect, ConsoleDisconnect, RemoteConnect, RemoteDisconnect,

10

Vineet Sharda

SessionLogon, SessionLogoff, SessionLock, SessionUnlock,

SessionRemoteControl, all of which are self-explanatory.

OnShutDown
If you have the CanShutDown property of the service set to true, then you

can override the method void OnShutdown() which will run when the

machine shuts down. You can do the cleaning up work in this method.

OnPowerEvent
If you have the CanHandlePowerEvent property of the service set to true,

then you can override the method bool OnPowerEvent(PowerBroadcastStatus

powerStatus) to handle the change in power status. You can do this by

using the PowerBroadcastStatus parameter. Some of its values are intuitive

like BatteryLow, PowerStatusChange (from battery to AC or vice-versa),

Suspend. Some other are: OemEvent, QuerySuspend (system has requested all

applications to assent to suspend), QuerySuspendFailed, ResumeAutomatic

(system has woken up to do something, for example, a scheduled task),

ResumeCritical (system has woken up after battery went to a critical

state), ResumeSuspend (system has woken up).

Controlling a Service Programmatically
You can review and control a Windows Service programmatically using

an instance of the ServiceController class, say ServCtrl. All that you have

to do is to specify the service. You can then access all its properties that

we have seen earlier, using the ServCtrl.

Sample code
ServiceController ServCtrl = new ServiceController("Serv2_OS");
if (ServCtrl.CanPauseAndContinue) {
 ServCtrl.Pause();
}

Note: Like all Windows Service related classes, the ServiceController is in the
System.ServiceProcess namespace and resides in the DLL of the same
name. Remember to add a reference to this DLL in your project.

Analyses

ServiceName

11

Vineet Sharda

Note that we have used the calue of the ServiceName property of the Serv2

service that we created earlier, in order to get a handle to it.

MachineName

By setting the MachineName property of the ServiceController instance, we

can control a service which resides on a remote machine.

Basic Properties and Methods

In the sample code, we used the CanPauseAndContinue property and Pause

method to accomplish our goal. Similarly, we can use the Start and Stop

methods and also get the values of all the properties that we discussed

earlier, for the service which the ServiceController controls.

ServicesDependedOn

With the ServicesDependedOn property of the ServCtrl, we get an array of

service controllers to all its dependency services.

Caution: The ServiceController class inherits the Component class and thus its
Site property. This property has nothing to do with the machine on
which the underlying service resides.

Controlling a Service from the Command Prompt
You can run the Net Start Serv2, Net Stop Serv2, Net Pause Serv2 or Net

Continue Serv2 commands from the command prompt to start, stop,

pause or continue the services, respectively. For example, the Serv2_OS

which was paused by the last sample code could be continued. This will

be the entire output:

C:\>net continue serv2_os
The Serv2_Display service continue is pending.
The Serv2_Display service was continued successfully.

Uninstalling a Service
The steps are the same as described in the Step 4: Install subsection of the

section Running the Service section. This time, just enter the text

installutil /u WinServ.exe after browsing to the appropriate folder in

the command prompt.

12

Vineet Sharda

References
The Services and Service Accounts Security Planning Guide, Microsoft

Corporation.

http://msdn.microsoft.com/en-

us/library/system.serviceprocess.sessionchangereason.aspx

http://msdn.microsoft.com/en-

us/library/system.serviceprocess.powerbroadcaststatus.aspx

http://msdn.microsoft.com/en-us/library/system.serviceprocess.sessionchangereason.aspx
http://msdn.microsoft.com/en-us/library/system.serviceprocess.sessionchangereason.aspx
http://msdn.microsoft.com/en-us/library/system.serviceprocess.powerbroadcaststatus.aspx
http://msdn.microsoft.com/en-us/library/system.serviceprocess.powerbroadcaststatus.aspx

